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Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential

William T. Coffey,l Yuri P. Kalmykov,2 Sergey V. Titov,” and J agdish K. Vijl
lDepartmemf of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland

2Groupe de Physique Moléculaire, MEPS, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France

3Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino, Moscow Region,
141190, Russian Federation
(Received 1 March 2005; published 12 July 2005)

The longitudinal and transverse components of the complex dielectric susceptibility tensor of an assembly of
dipolar molecules rotating in an asymmetric double-well potential are evaluated using a fractional rotational
diffusion equation (based on the diffusion limit of a fractal time random walk) for the distribution function of
orientations of the molecules on the surface of the unit sphere. The calculation is the fractional analog of the
Debye theory of orientational relaxation in the presence of external and mean field potentials (excluding
inertial effects). Exact and approximate (based on the exponential separation for normal diffusion of the time
scales of the intrawell and overbarrier relaxation processes associated with the bistable potential) solutions for
the dielectric dispersion and absorption spectra are obtained. It is shown that a knowledge of the characteristic
relaxation times for normal rotational diffusion is sufficient to predict accurately the anomalous dielectric
relaxation behavior of the system for all time scales of interest. The model explains the anomalous (Cole-Cole-
like) relaxation of complex dipolar systems, where the anomalous exponent differs from unity (corresponding
to the normal dielectric relaxation), i.e., the relaxation process is characterized by a broad distribution of

relaxation times (e.g., in glass-forming liquids).
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I. INTRODUCTION

The discrete orientation or Debye-Frohlich model of the
relaxation of an assembly of dipoles in a crystalline field in
its most simple form, namely, an asymmetric bistable poten-
tial with the escape time over the barrier (that is the greatest
relaxation time) given by the Arrhenius law, has often been
used to model relaxation processes in solids, amorphous ma-
terials, glass forming liquids, etc. [1,2]. The model is usually
analyzed via a very simple rate equation approach [3,4]. The
disadvantage of such an approach since it uses the Arrhenius
law is that it is inherently assumed [5,6] that the Maxwell-
Boltzmann distribution obtains everywhere even in the vicin-
ity of the barriers. Thus the prefactor of the greatest relax-
ation time is independent of the dissipative coupling to the
heat bath. Moreover, it is not directly apparent (again since
the Maxwell-Boltzmann distribution is assumed to obtain ev-
erywhere) how the discrete orientation model fits into the
general theory of stochastic processes in terms of kinetic and
stochastic differential equations as formulated by Boltzmann,
Einstein, Smoluchowski, Langevin, and Kramers [5-7]
where the dissipative coupling is taken account of via a par-
ticular Stosszahlansatz. Consequently, it is impossible in the
discrete orientation approach to include the dissipative cou-
pling to the bath (meaning interalia that the Maxwell-
Boltzmann distribution does not hold in the vicinity of the
barrier) in the dynamics of the particles in the asymmetric
potential neither is it possible to consider the relaxation pro-
cesses in the wells of the potential. The foregoing difficulties
may, however, be overcome by considering the rotational
Brownian motion of a dipole in a potential. This procedure
sets the various relaxation mechanisms rigorously in the con-
text of the general theory of stochastic processes. Moreover,
it allows one to consider a continuous distribution of orien-
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tations and the inclusion of the intrawell as well as the over-
barrier processes in the overall relaxation. In addition, it be-
comes apparent that a Stosszahlansatz other than the
adiabatic collision mechanism underlying the Brownian mo-
tion may also be treated. This fact is of paramount impor-
tance in the extension of the theory of normal orientational
relaxation in an asymmetric bistable potential to model
anomalous orientational relaxation behavior such as occurs
in glass-forming liquids [8].

By way of introduction, we remark that adaptations of
Einstein’s theory of the Brownian motion in the presence of
an external potential [9], have been widely used to model
exponentially decaying relaxation phenomena. In particular,
we mention the Debye model of orientational relaxation [4]
constituting an adaptation of Einstein’s translational Brown-
ian motion calculations to rotational motion in a potential
arising from the combined effect of a mean field due to other
molecules and an applied external time varying field. Appli-
cations of the Debye model include dielectric relaxation and
the dynamic Kerr effect of nematic liquid crystals, magnetic
relaxation of single domain ferromagnetic particles, dynamic
response of Josephson tunneling junctions, structural relax-
ation processes in amorphous materials such as glass-
forming liquids, etc. [6,9]. The Debye model assumes that
the dipole reorientation is governed by a single particle dis-
tribution function with generator given by a Markov process
evolving in time as a sequence of small angular steps caused
by collisions with the surrounding molecules as well as un-
der the effect of torques originating from, in the most general
case, an asymmetric internal mean field potential and an ap-
plied external field. Moreover, the Debye theory (like Ein-
stein’s theory) is based on the Fokker-Planck equation aris-
ing from the continuum limit of a discrete time random walk
in configuration space [6]. Thus a characteristic microscopic
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time scale is involved, namely, the mean square distance that
a Brownian particle may travel in a small time Az. The ex-
istence of such a microscopic time scale taking Einstein’s
original calculation of the mean square displacement of a
Brownian particle as an example, always leads as a conse-
quence of the central limit theorem [6] to Gaussian behavior
of the distribution function. If such a microscopic time scale
does not exist (e.g., where the Brownian particle is trapped in
a particular configuration for an arbitrarily long time before
making a jump so that we have a chaotic distribution of
waiting times as will arise in disordered materials), the cen-
tral limit theorem no longer applies leading to anomalous
diffusion and so to anomalous relaxation behavior. The fun-
damental solution or Green’s function in this case is no
longer Gaussian, instead [10] it is a Lévy distribution with its
characteristic long time tails giving rise to anomalous diffu-
sion and relaxation.

Here referring to the normal diffusion, the Fokker-Planck
equation is a partial differential equation for the evolution of
the distribution function of orientations of the molecule in
configuration space and so applies to strong dissipative cou-
pling to the heat bath [11]. Thus the Debye theory always
assumes that the dipolar molecule is bound so strongly to the
surrounding molecules (bath) that large jumps of the dipole
direction are extremely unlikely [3,11]. This according to
Frohlich [3] may be true in a number of cases but others may
exist in which the opposite (large jumps) is much more
likely. A dipolar molecule will then make many jumps due to
thermal agitation over the potential barriers separating it
from another dipole direction during the time required for an
appreciable change in direction by viscous flow. Clearly this
holds for solids where flow may be considered as entirely
absent; however it may also be expected in liquids (such as
liquid crystals) where the viscosity is so high that flow is
practically negligible. Moreover, both large and small jump
transitions may exist simultaneously giving rise to occasional
large angle reorientations (with exponentially large relax-
ation times) of the dipole over many potential barriers. Thus
we have both solid and liquidlike behavior in the bistable
potential model. The large jumps and the longest lived (over-
barrier) relaxation mode (an Arrhenius-like process) which is
associated with them may essentially be described by the
Kramers escape rate for a heavily damped Brownian particle
since the noninertial limit is assumed. There the energy loss
per cycle of a particle with energy equal to the saddle point
energy of the potential is much greater than the thermal en-
ergy kT. Thus in normal diffusion the relaxation time asso-
ciated with the overbarrier process is exponentially long
[6,7]. As well as the overbarrier process, fast intrawell relax-
ation processes exist having near degenerate eigenvalues and
so may be characterized by a single fast relaxation mode.
One may then show by solving the Fokker-Planck equation
using matrix continued fraction methods, how simple and
accurate approximate formulas for the longitudinal and trans-
verse components of the complex dielectric susceptibility
and the corresponding relaxation times may be obtained.
These formulas are based on the exponential separation of
the time scales of the intrawell and overbarrier (interwell)
relaxation processes. Thus a complete analytical solution of
the normal longitudinal dielectric (or magnetic) relaxation in
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an asymmetric double-well potential is given by two Lorent-
zians and so is almost as simple in form as the original De-
bye theory of relaxation in the absence of the potential (see
Ref. 6, Sec. 8.3.2 for detail). We coin the term Debye-
Frohlich models for such theoretical descriptions of the re-
laxation behavior.

Despite the success of the Debye theory in qualitatively
explaining the dynamical behavior of relaxing systems many
disordered substances (in the sense that they lack the period-
icity of crystals but behave mechanically like solids [8]) exist
such as [12] glass-forming liquids and polymers showing
very significant departures from the Debye behavior [4].
Such behavior is characterized by a very broadband low fre-
quency dielectric loss curve called the primary or
a-relaxation process with extremely long relaxation times [1]
extending over several decades of frequency. This phenom-
enon is accompanied by a high frequency relaxation process
known as the B process and a dramatic slowing down of the
primary relaxation process near the liquid glass transition.
The behavior of the shear viscosity « in glass-forming lig-
uids and solids (which effectively determines the frequency
of maximum loss in the a process) follows the Vogel-
Tammann-Fulcher law [8]

k=Aexp[B/(T-T,)],

where A and B are temperature independent constants. The
result of this behavior is that near the glass transition tem-
perature T, the frequency of maximum absorption of the «
process becomes zero. The theoretical explanation of this
primary process is one of the main challenges in the physics
of glasses [8]. Here we shall for the most part discuss the
accompanying B process. This relaxation process was ob-
served experimentally by Johari and Goldstein in a
chlorobenzene-decalin glass-forming system [13] and found
to be an Arrhenius or overbarrierlike relaxation process at
temperatures both above and below T,. These observations
suggest that the 3 process may be described by the Debye-
Frohlich model where the overbarrier relaxation time is ex-
ponential in the reduced barrier height and the overbarrier
relaxation process is a simple exponential decay. However,
recent measurements by a number of groups [1,14—16] have
shown that for some supercooled liquids the slope of the
(Arrhenius) plot for the frequency of maximum dielectric
loss versus the inverse temperature changes at temperatures
close to T, especially above T, indicating that the 8 process
also slows down so that it is characterized by a nonexponen-
tial decay.

The temporal and spectral features associated with all
these phenomena cannot be explained using a normal diffu-
sion model. Such models always rely as explained above on
the concept of a well-defined microscopic time scale, namely,
the time for an elementary jump of the random walker so that
a discrete time random walk is always involved leading ulti-
mately to an exponentially decaying relaxation process. The
very long relaxation times encountered in the experimental
observations discussed above suggest that such behavior
could be described via the language of continuous time ran-
dom walks (CTRW). Such walks are based on the idea that
the length of a given jump of a random walker as well as the
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waiting time between two successive jumps are random vari-
ables. This idea was introduced by Montroll and Weiss in
1965 [17,18]. The CTRW concept is the starting point of all
attempts to extend the Debye theory to anomalous relaxation
in complex systems, so that empirical decay functions used
to explain the broad band dielectric loss, e.g., the stretched
exponential of Williams and Watts [19], may be justified
[20-24]. In particular, the Debye theory of dielectric relax-
ation of an assembly of non-interacting polar molecules is
reformulated using a fractional noninertial Fokker-Planck
equation for the purpose of extending that theory to explain
anomalous dielectric relaxation in the context of Ref. [22] to
provide a microscopic model for the Cole-Cole relaxation.

It may be shown [11] that the fractional Fokker-Planck
equation arises from the diffusion limit of the long rests or
fractal time random walk where the mean waiting time di-
verges, however the second moment of the jump length dis-
tribution remains finite. The fractal time random walk invari-
ably leads to subdiffusion as the random walker always risks
being trapped in some site for an arbitrarily long time before
it can advance a distance equal to the finite variance of the
jump length distribution due to the disordered character of
the medium. The microscopic disorder in effect creates a
jagged array of microscopic potential barriers as schemati-
cally described in Ref. [25] giving rise to the chaotic distri-
bution of waiting times because the time of jump over a
microscopic barrier is a fractal time Poisson process. Models
of the fractal time random walk based on the idea of a jagged
array of microscopic potential barriers are often called ran-
dom activation energy models. Such a picture of the fractal
time process also suggests that the anomalous exponent,
characteristic of the Cole-Cole relaxation, should be tem-
perature dependent, which is in accordance with experimen-
tal observations. It has been shown by solving the particular
case of rotation of an assembly of dipolar particles [6,22,26]
that the fractal time random walk model can reproduce non-
exponential Cole-Cole-type anomalous dielectric relaxation
behavior. Moreover, the model reduces to the classical De-
bye model of rotational diffusion when the anomalous expo-
nent is unity. However, no calculations were carried out for
the anomalous relaxation in space of an assembly of dipoles
in an asymmetric bistable potential, which is the case of
greatest interest in structural relaxation. A rigorous calcula-
tion based on a fractional Fokker-Planck equation will thus
allow one to determine the effect of the anomalous behavior,
i.e., the fractal time Stosszahlansatz, on all the decay modes
of the system particularly the slowing down of the overbar-
rier mode associated with the Kramers escape rate and to
calculate the dynamic dielectric susceptibility.

Here we shall evaluate the components of the dielectric
susceptibility tensor of an assembly of noninteracting polar
Brownian particles in the asymmetric double-well mean field
potential arising from a uniaxial potential —K(n-e)? (K is the
anisotropy constant, e=u/u, p is the permanent dipole mo-
ment of a molecule, and n is the unit vector in the direction
of the anisotropy axis) and a superimposed strong dc electric
field E,. In order to retain axial symmetry, we suppose that
the field E, and axis of the uniaxial anisotropy potential n
are directed along the Z axis of the laboratory coordinate
system. The total potential can be written as
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Vo=—K(n-e)* - u(E,-e). (1)

Both exact and approximate solutions of the fractional
Fokker-Planck equation, in which the inertial effects are ne-
glected [26], are presented for this particular bistable asym-
metric potential. The exact solution of the problem reduces
to the solution of infinite hierarchies of differential-
recurrence relations for the corresponding relaxation func-
tions. The longitudinal and transverse components of the sus-
ceptibility tensor may be calculated exactly by matrix
continued fractions from the Laplace transform of these re-
laxation functions using linear response theory. We shall also
demonstrate that the characteristic times of the normal diffu-
sion process, namely, the integral and effective relaxation
times allow one to evaluate the dielectric response for
anomalous diffusion as proposed in Ref. [26]. Tt will be
shown how this procedure yields a simple analytical equa-
tion for the complex dielectric susceptibility tensor describ-
ing the anomalous relaxation of the system. Finally, we in-
dicate how our results may explain the observed non-
Arrhenius behavior of the B relaxation in glass-forming
liquids.

II. FRACTIONAL ROTATIONAL DIFFUSION EQUATION

We suppose that a small probing field E; having been
applied to the assembly of dipoles in the distant past (1=
—0) so that equilibrium conditions have been attained at time
t=0, is switched off at r=0. In addition, it is supposed that
the field E, is weak (i.e., uE; <kT, which is the linear re-
sponse condition; k is the Boltzmann constant, and 7 is the
temperature). Our starting point is the Fokker-Planck equa-
tion for the evolution of the probability density function
W(9,¢,t) for normal diffusion of dipole moment orienta-
tions on the unit sphere in configuration space (9 and ¢ are
the polar and azimuthal angles of the dipole, respectively).
This equation is valid when the inertia of a dipole is ne-
glected (meaning very strong dissipative coupling to the
bath) and has the form

I W= LW 2)
ot — LFpYY .

The Fokker-Planck operator LFP=L2P+Lext for normal rota-
tional diffusion is defined as [6,9]

1 1
LoW=—|V2W+ —V(WVV,) |,
FP 27_ kT ( O)

©)

1
L W= kT V(WVV,),
where V2 and V are the Laplacian and gradient on the sur-
face of the unit sphere, 7={/2kT is the Debye relaxation
time for rotation in space, { is the viscous drag coefficient.
The potential energy V., of a dipole due to the perturbing
field E, is (see Fig. 1)

Vy(ﬁ’ (P’t) == /‘LE] (t)u'y(ﬁ’ (P) . (4)

Here y=|l denotes the longitudinal response and y= L for the
transverse response with y;=cos ¢ and u, =cos ¢ sin .
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FIG. 1. Double-well potential V(9)/kT=—=§&, cos®> 9—&cos
for anisotropy (inverse temperature) parameter &,=2 and various
values of the bias field parameter & (£=0 corresponds to symmetric
bistable potential).

Our objective is to ascertain how anomalous diffusion
modifies the dielectric relaxation in a bistable potential with
nonequivalent wells, Eq. (1) (see Fig. 1). Thus we need the
fractional Fokker-Planck equation describing the evolution
of the distribution function of orientations of a dipole with
the underlying mechanism (or Stosszahlansarz) being a frac-
tal time random walk rather than the fixed jump time random
walk underlying the normal diffusion Eq. (1). The fractional
Fokker-Planck equation for the diffusion limit of a fractal
time random walk on the surface of a unit sphere may be
written down by adapting calculations [27-29] given for the
diffusion limit of the translational fractal continuous time
random walk to the rotational motion of a rigid dipole so that
[6,11]

oW
i 777 D} " LpW, (5)

where the operator (D™= d/dt ,D;” in Eq. (5) is given in
terms of the convolutlon (the Rlemann-Liouville fractional
integral definition) [27,30]

v W(, @,t")dt’
()D W(ﬁ (Pst) F( )f (P)l -0 (6)

where I'(z) is the gamma function [31]. Here, we consider
subdiffusion phenomena only (0<o<1; o=1 corresponds
to the normal diffusion).

The formal step-off transient solution of Eq. (5) for =0
is obtained from the eigenfunction representation [26,29]

©

W(D,,1) = Wo(D) + 2 (D, @)F (1) ()

p=0
with the initial (equilibrium) distribution function
W(ﬁ, QD,O) — Ce—[VO(ﬁ)+V7(13,tp,0)]/kT
= W)L+ &, = (u)0) + O] (®)

where Wy()=e¢~"0kT/Z is the equilibrium distribution func-
tion in the absence of the external field E, which satisfies
LgPWO(ﬁ)zo, Z is the partition function given by
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1
Z= f EHE I
-1

= | e erfi VE (1 + B)] + erfil NE(1 = W) ],
4&y
9)

erfi(x)=2/\nf Se’zdt is the error function of imaginary argu-
ment, h=¢&/(2€,) is the reduced field (or asymmetry) param-
eter, §y=K/kT and &é=puE,/kT are the dimensionless aniso-
tropy and bias field parameters, & =uE,/kT is the applied
external field parameter, the angular brackets (- - -), mean the
equilibrium statistical average over W, and the decay modes
F (1) obey the equation

—F, () ==\, D} F,(1). (10)

Here the eigenvalues )\ o, are expressed in terms of the ei-
genvalues N\ of the operator LY, for the normal diffusion,
Viz.,

Lyp®)(9.0) == N D)(D, ¢)
so that [26,29]

_ l-o
N =NI7i0 (11)
The solution of Eq. (10) is given by [27,29]
F,(1) =E,(=N) ;17), (12)

where E,(-\) ;1) is the Mittag-Leffler function defined as

E(z) = E

The Mittag-Leffler function interpolates between an initial
stretched exponential form or Kohlrausch-Williams-Watts
function [8]

E - (t/7)7] ~ exp[— (¢/7)?/T'(1 + 0)]

and the long-time inverse power-law behavior characteristic
of the long-time behavior of the moments of a Lévy distri-
bution [10]

E, (-t ~[tDT(1-0)]'t>7 0<o<lI.

Equation (11) exemplifies how the eigenvalues of the normal
distribution process are altered, in this case reduced, by the
nonlocal character of the anomalous diffusion process. The
eigenvalues of that process are related to their Brownian
counterparts by the prefactor 7!7.

The Sturm-Liouville representation (7) is purely a formal
solution as a knowledge of all eigenfunctions ® (1, ¢) and
corresponding eigenvalues )\g is required. However, this rep-
resentation is very useful as it allows one to obtain a formal
solution for the dipole relaxation functions Cy(t) and the
complex susceptibility tensor components y.(w)=x.(w)
—i )(y(w) (y=1l, L). According to linear response theory [6],
the longitudinal and transverse components of the complex
dielectric susceptibility x,(w) are defined as

011103-4



FRACTIONAL ROTATIONAL DIFFUSION OF RIGID...

X{) =l-iw J i e''C (t)dt, (13)
Xy 0
where
(u,)(1) =)o
RS 7SV i 74}
A= 0~y (1)
2
xi= B2 (o 9), - (eos B
and
2
XL = ngo (cos? ¢ sin? ¥,

are the components of the static susceptibility tensor, N, is
the concentration of dipoles, and (- --)(z) denotes the statisti-
cal averages W(4J,¢,r). Thus one has from Egs. (7) and
(12)-(14) [26]

C\(1) = 2 ¢JE[- Nr(t/7)] (15)
P
and
XA@) _ c, 16
Xy » 1+ (i07)%(7\) ’ (16)

where 2 ,¢/=1.

In the low- (w—0) and high- (w— ) frequency limits,
the susceptibility tensor components may readily be evalu-
ated. We have from Eq. (16), respectively, for o— 0 and for

w— 0

%
XAD) Ty (17)
Xy T
Xy(w) ~— TU - . (18)
Xy (ion)7%

where
=Sy and Tgle/Ec;xg. (19)
p

Here 77, is the integral relaxation time (the area under the
relaxation function) and 7% is the effective relaxation time
(yielding precise information on the initial decay of the re-
laxation function in the time domain) for normal diffusion
(o=1). Indeed, the relaxation times 7, and 7); can be evalu-
ated from their equivalent definitions [6]

7 = f C,Hdt and 7%=~ 1/C(0). (20)
0

On the other hand [6] no such characteristic times exist in

anomalous diffusion (0<<1) because of the underlying cha-

otic waiting time distribution which is the generator of the

fractal time random walk. This is obvious from the long-time

inverse power law behavior of the Mittag-Leffler function. In

the context of anomalous diffusion, the times 77, and 7); are
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always parameters of the normal diffusion. They exist be-
cause in normal diffusion an underlying microscopic time
scale exists, namely, the duration of an elementary jump,
characteristic of the random walk.

III. MATRIX CONTINUED FRACTION SOLUTION

In general, it is difficult to evaluate dielectric parameters
from Egs. (16) as a knowledge of all the eigenvalues N} and
corresponding amplitudes ¢} is required. A simpler (from the
computational point of view) solution can be given via ma-
trix continued fractions [6]. The general transient response
solution of Eq. (5) for r=0 is [6]

W("-(}v QD?t) = Wo(ﬁ)

2 2 QI+ 1)(I—m)!

taZ 3 e s ),
1=0 m=-1 .

21

where the P}'(x) are the associated Legendre functions [31]
and the equilibrium distribution function may be expanded in
the Legendre polynomials P;(x) [31], viz.,

1 oo
Wo(9) = — >, (21 +1)G,P/(cos 9), (22)

47Tl:0
and G,;=(P/(cos 9)),. By substituting Eq. (21) into Eq. (5),
we have the fractional differential recurrence relations for the
longitudinal and transverse relaxation functions fl‘(t) and

fiH (@)

=) { { T ]f o
2(21 a1 L0 @]+ %f; A1)
%ﬂHZ()} (23)

0= _U{ [fv(zj(i)l()zz_j 3 o ]f r(0
2(21 201 LU+ D0 = Pfi (0]

: %ﬁ—z@ - jﬂ%fﬁzm},
(24)

where f)(t) and f}(7) are defined by
£1(6) = cj (1) = (Py(cos 9))(1) = (P, (25)

F(6) = Re[cf ()] = (cos @P}(cos D)D), (26)
so that the relaxation function C,(#) describing the decay of
the electric polarization is C,(#)=f1(¢)/f](0).

We now present the solution of Egs. (23) and (24) and in
terms of matrix continued fractions. The advantage of posing
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the problem in this way is that exact formulas in terms of
such continued fractions may be written for the Laplace
transform of the after-effect function, the correlation time,
and the complex susceptibility. The starting point of the cal-
culation is Egs. (7) and (8) written as the matrix differential
recurrence relation

Cl(t)= 77 ,\DTQ)CY (1) + Q)C)(1) + Q) CY,(1)].

(27)
Here the vectors C/(r) are defined as
fzyl—l(t)>

C/(t) = s 28

o= g

where the 2 X 2 matrices Q}*, Q] are given in the Appendix.
The three-term matrix recurrence relation Eq. (27) may now

be solved for the Fourier-Laplace transform é}’(w) yielding

[6]

Clw) = T(im)“-lAz(w)[cr(O)

®© l
+ (H QZflAZ(w))ClV(O)] : (29)
=2 \k=2

where A}(w) is the 2 X2 matrix continued fraction defined
as

Al(w) =[(i07)T- Q- QI"AL,,(0)Q[;,].  (30)

The initial value vectors

ﬁ1—1(0)> 31)

f31(0)

can be also evaluated in terms of such continued fractions

C/(0) =(

(see the Appendix). Here ély(w) denotes the one-sided Fou-
rier transform, viz.,

Clw) = f e ICH(t)dr.
0

Equations (29) and (30) and constitute the exact solution of
our problem formulated in terms of matrix continued frac-

tions. Having determined the Laplace transform ﬁ(w) and

noting that C Siw) =fly(iw) /£{(0), one may calculate the sus-
ceptibility x,(w) from Eq. (13).

IV. BIMODAL APPROXIMATION

The matrix continued fraction method given yields the
exact solutions for the complex susceptibility for all values
of the thermal and anisotropy energies. Consequently, that
method is an indispensable tool in estimating the accuracy of
approximate solutions for typical parameters of the system.
For example, in normal diffusion, the Kramers escape rate
provides a close approximation to the smallest nonvanishing
eigenvalue the inverse of which in turn provides an approxi-
mation to the longest relaxation time in a system where bar-
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rier crossing is involved as well as the correlation time for
bistable potentials with equivalent wells. The matrix contin-
ued fraction method then allows one to determine the range
of system parameters, e.g., barrier height, friction, etc., in
which the approximate solution for the longest relaxation
time provided by the Kramers method is valid. Nevertheless,
in practical applications such as the analysis of experimental
results, the matrix continued fraction method is of very lim-
ited use since the dependence of the susceptibility tensor on
the model parameters is not obvious from this method. Thus
it is desirable to try to obtain simple approximate formulas
describing the dynamical behavior. This has been accom-
plished in [6,26] for both normal and anomalous diffusion.
The method proceeds from linear response theory which al-
lows one to use, taking anomalous diffusion as an example,
the after effect solution of the fractional Fokker-Planck Eq.
(5) Thus the solution of Eq. (5) may be converted to a Sturm-
Liouville problem with the time behavior described by an
infinite set of Mittag-Leffler [6] functions rather than the
decaying exponentials characteristic of the normal diffusion.
The Mittag-Leffler functions all have a long-time tail char-
acteristic of anomalous diffusion. Moreover, their arguments
depend on the eigenvalues of the normal diffusion process.
The presence of the long-time tail means that the Mittag-
Leffler functions describe the nonlocal behavior of the sys-
tem. The advantage of posing the solution of Eq. (5) as a
Sturm-Liouville problem now becomes apparent. Namely, by
formulating the problem in this way it is very easy to deter-
mine how the eigenvalues of the normal diffusion process
are scaled (in the case of subdiffusion o<1 considered here
reduced) by the nonlocal character resulting from the micro-
scopic disorder of the anomalous diffusion process. An im-
portant consequence of this is that one may determine the
slowing down of the Kramers escape rate in essence the low-
ering due to nonlocal effects of the frequency of maximum
loss (and consequent slowing down of the relaxation pro-
cess) of the low frequency absorption. (Recall that the Kram-
ers escape rate is the high barrier limit of the smallest non-
vanishing eigenvalue of the Fokker-Planck equation for the
normal diffusion.) In addition, one may determine how non-
local effects influence all the other characteristic frequencies
of the normal diffusion spectra. Now in the normal longitu-
dinal relaxation, the time scales of the overbarrier and in-
trawell relaxation processes are exponentially separated. Fur-
thermore, the intrawell modes are near degenerate yielding
only two effective relaxation modes. The foregoing consid-
erations suggest that in anomalous longitudinal relaxation
one may again approximate the infinite number of Mittag-
Leffler decays, Eq. (15), by two Mittag-Leffler functions
only [26]. One of these associated with the overbarrier mode;
the other associated with the near degenerate “intrawell”
modes.

The corresponding longitudinal complex susceptibility
Xi(w) can be effectively described then by the sum of two
Cole-Cole spectra, viz., [26]

Xi() A, 1-4,
= + R
Xi 1+ (iow/w)? 1+ (io/oy)”

(32)

where the characteristic frequencies w; and wy, are given by
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o= MDY o= (AT (33)

and )\‘1‘ is the smallest nonvanishing eigenvalue of the
Fokker-Planck operator LY, for the normal rotational diffu-
sion defined by Eq. (3). The low-frequency band is due to the
slowest (overbarrier) relaxation mode; the characteristic fre-
quency wj and the half-width of this band are determined by
)\'{. Thus, the anomalous low frequency behavior is domi-
nated by the barrier crossing mode as in the normal diffu-
sion. The high-frequency band is due to “intrawell” modes
corresponding to the eigenvalues \; (k# 1) of Lgp. These
near degenerate “intrawell” modes are indistinguishable in
the frequency spectrum of y’(w) merely appearing as a
single high-frequency band with characteristic frequency wy,.
The parameters A, and 7y are defined in terms of the char-
acteristic times of the normal diffusion (the integral relax-
ation time 7, ., the effective relaxation time 7Jf, and the in-

nt
verse of the smallest non-vanishing eigenvalue 1/\| 1) [6,26]

A=

nt

-2+ 1/()0,‘ 7))’

e
=t (34
VN1, (34)

1= )\\I 7J\

1 ‘int

Furthermore, for the transverse response, noting that 7
= 7=\ for all values of the model parameters, the spec-
trum of x, (w) may be approximated by the single Cole-Cole

equation

1
X.(w) _ : ’ (35)
XL I+ (iw/w,)”
where the characteristic frequency w, is given by
w, =7 (7). (36)

In the foregoing equations 7, 7, and A} are calculated
as follows. The effective relaxation times 7J'f and 7 are
given in terms of equilibrium averages (P,),, and (P,), only

(Ref. [6], Chap. 8)

2P+ 1-3(P)}

=1 , 37
o 1-(P)y 7
1 _ 1- <P2>0
T P2 i
where
evsinhé &

PYyy=—"T"T¥—"-—-, 39
(P1)o £z 2%, (39)

3etv £ ) _fz 3.1

(Py)o= 2§VZ<COSh &- 2%, sinh €| + ng 26, -7
(40)

the partition function Z is given by Eq. (9). The integral
relaxation time 77, can be evaluated numerically from the
continued fraction solution 77, = 7(0)/C (0) at o=1. More-
over, the longitudinal integral relaxation time 7., is given in
exact integral form as ([6], Chap. 8)

PHYSICAL REVIEW E 72, 011103 (2005)

| _ 27
™ Z((cos® 9)g - (cos D))
1 ) , 2 Vol2)/kT
Xf f (Z’ - <COS ﬁ>0)e_VO(Z )/deZ, 2 dZs
—1 1 -
(41)

where z=cos ¥. The smallest eigenvalue )\'{ can also be
evaluated numerically as described in detail in Ref. [6],
Chap. 8.

In the low temperature limit 2&,+ &> 1, the quantities A,
1-A,, and 7y in Eq. (32) may be evaluated from the simple
equations [32]

4(1 - h?)
[(1+h)e 2V 4+ (1 = h)e*V'’

XA~
xi(1=Ay) ~ [2&(1+ )],

5+h |7t
TW~T|:2§V(1+h)—l_+'__h:| . (42)

A} can be approximated by Brown’s formula [33,34]

3/2 2
1-h
N = %[( T e i

(43)

For small values of &y, Eq. (43) (which assumes high poten-
tial barriers) is inadequate. Here, we can use an approx1mate
equation for the effective relaxation time fe'f because )\‘
~1/ He‘f for £&,<1 [6]. For small values of £ and &, one can
use the exact Taylor series expansion ([6], Sec. 8.3.2)

48 5 32 » 15552 g
87557 21875 T 58953 125

Nir=1-2g 4o
| 5 1%

- R T
10 875°" 84375 7000

ine> Tefs 1/)\'{, Ty, and T, are
presented in Table 1. Equations (42) and (43) allow one to
readily estimate the asymptotic behavior of the characteristic
frequencies w; and wy in Eq. (33).

Returning to Eqgs. (32) and (33) and as far as a physical
interpretation is concerned we remark that the peak fre-
quency w; of the dielectric loss associated with the overbar-
rier processes decreases sharply as the anomalous exponent
o decreases from unity. Conversely, the overbarrier relax-
ation time, defined as the inverse peak frequency, sharply
increases tending to infinity as o approaches 0. Moreover, o
is in principle temperature dependent as it appears that the
microscopic origin of ¢ lies in the random activation energy
model which is the ultimate generator of the fractal time
random walk underlying our generalized Debye-Frohlich
model. The reason for this behavior is obvious from Eq. (33)
because the argument in the exponential of the Arrhenius-
like expression for the overbarrier frequency is reduced by
the factor o' due to the scaling of the eigenvalues of the

(44)
Selected numerical values of 7., 7
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TABLE I. Numerical values of 1/}, 7, 7.

1
ine Tep Tw» and 7 for
normal diffusion.

&=10 £=0 £&=2 &=5 £=10
NV 693.9 2325 26.83 2.265
7 691.0 224.15 3.398 0.0387
I 16.64 1.690 0.0565 0.0384
T 0.0714 0.0615 0.0495 0.0384
T 0.0742 0.0661 0.0565 0.0460
£=2 &y=1 &y=>5 &=10 &y=15
/A 0.9763 6.387 232.5 16484
e 0.8912 5.720 224.15 16221
e 0.7528 1.098 1.690 2.366
Tw 0.2866 0.1383 0.0615 0.0377
% 0.3430 0.1323 0.0661 0.0441

normal diffusion caused by the anomalous exponent. Conse-
quently, the overbarrier relaxation mode is extremely sensi-
tive to the value of o and by extension (postulating tempera-
ture dependence of o) to temperature.

V. RESULTS AND DISCUSSION

The frequencies w, and wy as functions of &, (i.e., the
inverse dimensionless temperature) at a fixed value of &
=0.2 are plotted in Figs. 2(a) and 3 for various values of o
and in Fig. 2(b) for various values of & when o=0.8. Appar-
ently the fractional exponent o strongly influences the tem-
perature dependence (expressed by means of the parameter
&y) of w; and wy,. The relaxation behavior due to the near
degenerate intrawell modes may be (just as the behavior of
the overbarrier mode) described by a plot of 7wy as a func-
tion of &, (Fig. 3). Figure 3 exhibits an increase in the fre-
quency of maximum loss of the high frequency peak due to
the intrawell modes as the temperature is reduced. Now a
high frequency shoulder appears in the dielectric spectra of a
few glass-forming liquids such as glycerol [12] and may be
due to the intrawell modes. However, this cannot be rigor-
ously established at present as the temperature dependence of
the shoulder frequency is difficult to determine because the
amplitude of the shoulder itself is barely detectable in the
present state of the art of dielectric spectral measurements. It
is also possible that the intrawell mode shoulder may corre-
spond to the mode predicted by Gotze and Sjogren in their
mode coupling theory of viscous and glass-forming liquids
[35].

One of the most interesting facets of the theory is the
manner in which the eigenvalues of the normal diffusion
process are effectively reduced by the nonlocal character of
the anomalous subdiffusion process. In particular, the Kram-
ers escape rate for the present problem is reduced by the
factor 777 due to the nonlocal character of the anomalous
diffusion. This amounts to a critical slowing down of the
overbarrier relaxation mode with consequent broadening of
the spectra as o decreases. Moreover, the slowest decay
mode will be highly nonexponential in character as its be-
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1:o=1.0
2:0=0.8
3:6=05

FIG. 2. Angular frequency of maximum loss of Arrhenius pro-
cess w [solid lines: Eq. (33) with exact values of the smallest
nonvanishing eigenvalue )\'H versus &y (inverse temperature) for (a)
asymmetry parameter £=0.2 and various values of anomalous ex-
ponent ¢ and for (b) =0.8 and various values of 4. Dashed lines:
Eq. (33) with )\”1 from the high barrier asymptote Eq. (43).

havior will be dictated by a Mittag-Leffler function with w,,
as part of its argument.

The real and imaginary parts of the susceptibility from
both the exact continued fraction solutions and the approxi-
mate Egs. (32) and (35) for typical values of the model pa-
rameters are shown in Figs. 4-7. The agreement between the
exact continued fraction calculations and the approximate

1:o=10
2:6=08
4§ 3:6=05
10 1 4 4: =02
.
10°4 3
L
10° : . :
0 5 10 15 20

FIG. 3. Well angular frequency of maximum loss wy, versus. &,
for h=0.2 and various values of o [solid lines: Egs. (33) and (34)
with exact values of the smallest nonvanishing eigenvalue )\‘]‘, inte-

gral relaxation time 7., and effective relaxation time 7..].
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o=05 £,=10
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(LTI

=N o

o

10 10 10”° 10° 10

i e O e

FIG. 4. Real and imaginary parts of the longitudinal complex
susceptibility y;(w) and x|(w) versus w evaluated from the exact
matrix continued fraction solution (solid lines) for ¢=0.5, &,=10
and various values of & and compared with those calculated from
the approximate Eq. (35) (filled circles) and with the low (dotted
lines) and high (dashed lines) frequency asymptotes Eqgs. (17) and
(18), respectively.

=05

IR A A —————————

_12 8

10° 10 10° 10* 10
T

10

FIG. 5. The same as in Fig. 4 for ¢=0.5, 0=2 and various
values of &y.
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107 A —
10 10 100 ,,, 10 10 10

o oy oy

FIG. 6. Real and imaginary parts of the transverse complex
susceptibility x' (w) and '] (») versus wT evaluated from the exact
matrix continued fraction solution (solid lines) for ¢=0.5, &,=10,
and various values of & and compared with those calculated from
the approximate Eq. (35) (filled circles) and with the low (dotted
lines) and high (dashed lines) frequency asymptotes Eqs. (17) and
(18), respectively.

Egs. (32) and (35) and is very good [the maximum relative
deviation between the corresponding curves does not exceed
a few (3-5) percent]. Similar (or even better) agreement is
obtained for all values of ¢, &y, and o. Thus one may con-
clude that the Cole-Cole susceptibilities Egs. (32) and (35)
and accurately describe the behavior of x.(w) for all fre-
quencies of interest and for all values of the bias field
strength (&), anisotropy constant (&), and anomalous expo-
nent (o) parameters. Hence, the generalized Debye model
can explain the anomalous relaxation of complex dipolar
systems where the anomalous exponent ¢ differs from unity
(corresponding to the classical Debye theory of dielectric
relaxation), i.e., the relaxation process is characterized by a
broad distribution of relaxation times. The longitudinal com-
ponent of the susceptibility tensor in general exhibits a very
broad band low frequency peak arising from the overbarrier
relaxation superimposed on which is a weaker high fre-
quency wing. However, if the reduced field parameter h
(which characterizes the asymmetry of the potential) is suf-
ficiently large (h>0.5), the low frequency peak vanishes
which may be explained as follows. We recall that 2=0 cor-
responds to the symmetric bistable potential while 2=1 is the
value of i at which the bistable structure of the potential
disappears that is the nucleation field. However, for normal
diffusion in the asymmetric bistable potential given by Eq.
(1) the shallower of the two potential wells becomes com-
pletely depopulated at #=0.17 which is much less than the
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FIG. 7. The same as in Fig. 6 for ¢=0.5, 0=2 and various
values of &y.

nucleation field so that the relaxation is no longer dominated
by the low frequency peak generated by the overbarrier pro-
cess. Thus as far as relaxation is concerned although the
bistable structure still exists, all that effectively remains is
the high frequency absorption peak due to the well process.
The behavior is reminiscent of a phase transition controlled
by the asymmetry parameter h.

As far as comparison with experiment is concerned the
theory of the three-dimensional fractional rotational diffusion
of rigid dipoles in an asymmetric double-well potential de-
veloped in this paper can be applied in qualitative fashion to
explain the Johari-Goldstein relaxation (8) process in glass-
forming liquids [13]. This process first appears distinctly at
temperatures of about 20 K above T,, and persists at lower
temperatures to 30-50 K below T, in most glass-forming
liquids. The process is believed to arise from overbarrier
relaxation in the liquid and glass states of matter of dipolar
molecules over potential barriers high compared to the ther-
mal energy [36]. We recall that the B relaxation process was
observed experimentally by Johari and Goldstein in a
chlorobenzene-decalin glass-forming system [13] and exhib-
its Arrhenius-like behavior for the frequency of maximum
loss versus 7-!' at temperatures both above and below T,.
However, as we have already mentioned recent measure-
ments [14-17] have shown that in a variety of supercooled
liquids a significant departure from Arrhenius-like behavior
occurs in certain temperature regions, namely, the slope of
the Arrhenius plot for the frequency of maximum dielectric
loss (f,, ) changes at temperatures close to T, especially
above T,. An increase in the magnitude of the slope above T,
has conclusively been observed for D-sorbitol [14] by apply-
ing pressure; for picoline-tristyrene mixtures [15], and for
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the copolyesters of poly(ethylene-terephthalate) and poly-
(ethylene isophthalate) [16]. In some cases, f,, 5 becomes
temperature independent over a small temperature range
around T, or even goes through a maximum [1]. We note
from Fig. 2 that the plot of w;~ f,, g versus &y is observed to
be non-Arrhenius in character for values of & in the range
3-6, where the departure from a straight line is indicated by
a kink in the plot. The plot also exhibits the maximum men-
tioned above [see Fig. 2(b)]. The overall behavior can be
understood physically in terms of the asymmetry of the po-
tential landscape altering due to the glass-forming liquid
changing its microscopic structure as the temperature of the
liquid approaches T, from higher temperatures. After the
asymmetry has become well established, the liquid at tem-
perature close to T, is too viscous for any further changes to
occur in its energyscape. Thus the plot at lower temperatures
(&,>1) again becomes Arrhenius as is experimentally ob-
served. Now, the anomalous exponent o or Cole-Cole pa-
rameter is known to vary with temperature [37] as is consis-
tent with the elementary jumps over a jagged potential
barrier concept underlying the microscopic origin of the frac-
tal time random walk. Therefore, the plot of f,, 5 versus 1/T
may alter its slope as temperature varies indicating a non-
Arrhenius temperature dependence. This behavior is entirely
in accord with that predicted by Eq. (33), where the decrease
of w; with a decrease in ¢ at a given temperature (specified
by &) is much faster than that predicted by normal diffusion.
Thus the effect of anomalous diffusion at a given tempera-
ture is to substantially increase the effective barrier height,
which becomes infinite as o— 0. Hence, the overall behavior
of w; versus &, appears to be entirely consistent with the
schematic Fig. 1 of Paluch et al. [14] illustrating the relation-
ship between the relaxation times for structural relaxation («
process) and the secondary relaxation or B process noting of
course that they plot the inverse of w, versus inverse tem-
perature.

The theory we have developed may also be applied to
dilute suspensions of fine magnetic particles (ferrofluids) by
a simple change of notation. Experiments on the magnetiza-
tion induced by a weak ac field superimposed on a strong dc
magnetic field may be realized in practice in a ferrofluid as a
large value of & can be achieved with a moderate constant
magnetic field due to the large value of the magnetic dipole
moment m (10*—10° Bohr magnetons) of single domain par-
ticles. The anomalous relaxation behavior naturally appears
in ferrofluids due to the broad distribution of particle vol-
umes v (for fine particles, the magnetic moment and the
Debye relaxation time strongly depend on v) [38]. Again
with a simple change of notation the present theory may be
used to set the Gilroy and Philips model [2] of structural
relaxation processes in amorphous materials and the Dyre
and Olsen’ minimal model for beta relaxation in viscous lig-
uids [1], which we have essentially discussed in the previous
paragraphs, in the framework of the general theory of sto-
chastic processes. Moreover, the formulation of the theory in
terms of kinetic equations, as the diffusion limit of fractal
time random walks, allows anomalous diffusion effects to be
incorporated into both of these models with the very impor-
tant result that one may determine how the decay constants
of the normal diffusion that is the eigenvalues are affected by
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the anomalous behavior. Our results may be regarded as a
generalization of the solution for the normal rotational
Brownian motion [6] to a fractal time random walk
Stosszahlansatz (giving rise to anomalous diffusion). We re-
mark that just as the conventional Debye relaxation equation
(o=1), the Cole-Cole equation may be derived from a num-
ber of very different models (see, e.g., Refs. [20-24]). How-
ever, the advantage of using kinetic equations (such as the
fractional Fokker-Planck equation) over all other approaches
is that the origin of such equations lies in the general theory
of stochastic processes. Moreover, one may explicitly in-
clude both internal and external field potentials and exactly
calculate their effect on the relaxation process. We also re-
mark that in dielectric relaxation our results are restricted to
the low frequency range, as defined by the inequality wT,

4¢,(1-1)(21-1)1

(41-1)(41-3)

PHYSICAL REVIEW E 72, 011103 (2005)

<1(y=Il, L), because the theory does not include the ef-
fects of molecular inertia. A consistent treatment of inertial
effects must be carried out using the appropriate inertial ki-
netic equation for the evolution of the probability density
function in phase space [6].
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APPENDIX: MATRICES Q}*, Q AND INITIAL VALUE
VECTORS C}(0)

The 2 X2 matrices Q/*, Q} in Eq. (27) are

&21-1)1
41-1
26,21-1)QI+ 1)1 |
41+ 1)(4l-1)

—&(2I-1)
411
2&y

||

0

s

—4&(I+ 121+ 1)1

Q=
0
2¢y
. l<21_1)[(4z-3)(41+1)_1}
= E(20+1)
41+ 1
286,21+ 1)(21- 1)l
I+ _ 4l-1)41+1)
L= —d02I+1)
41+ 1
4&,27(21-1)
| @r-1@-3)
L=
2021-1)-3
L | a3y “2-1)
Q= 21+ 1)?
2(41+1)
28,021 -1)?
| @-na
. 2%;12

T 4l+1

(41+ 1)(41 +3)

281
4/-1
26121+ 1) |
(41-1)(41+1)

£21-1)%
T 2(41-1)
2021+ 1)-3 i)

Y(41-1)(41+3)

0

4€,2021+ 1)
T (4l+1)(41+3)
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The initial value vectors C}(0) in Eq. (31) may be deter-
mined using matrix continued fractions because the initial
values f7(0) are expressed just as in normal diffusion in
terms of the equilibrium averages ([6], Chap. 8)

110) = &[(cos 9P, (cos 9))y— (cos F(P (cos 9)),]

[+1 I
=& JT<P1+1>O+ m@/_ﬁo— (PolPo |
(A1)
ff(O) = ¢{(cos? cpP}(cos 1?)Pl1 (cos 9))g
I(l+1
= §1ﬁ[@1—1>0— (Pr1ol- (A2)

In turn, the equilibrium quantities (P, satisfy the set of
equations ([6], Chap. 8)

|_(<P21—3>0> N |<<P21—1>0> N +<<P21+1>0> o
" (P "\ (Pay)o " (P '

The solution of Eq. (A3) is then given by

<P21—1(COS 19)>O> _al Il ol (0)
( <P2[(COS 19))() _SI(O)S —1(0) SI(O) 1 5 (A4)

where S)(0)=AJ(0)Q)™ and A}(0) is given by Eq. (30) at
=0.

Thus according to Egs. (Al), (A2), and (A4), the initial
conditions C7(0) using matrix continued fractions are

(A3)
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0 0
ClO=& || 20+1  [8:i(©®

41+ 1
21
—{(P1)o T G0
Y . (0)
41+ 1 = (Pao
20-1
0 — 0
+ o 4l-1 81_1(0)~--s,<0)(1),
0 0
0 0
CiH0)=¢ @i+ 0 S!.,(0)
41+ 1
121-1)
T o4l-1 sl0)
M !
41+ 1
0 121-1) 0
+ 41-1 S”_I(O)---s‘{(O)1 :
0 0
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